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AbstracL The effect of a demagnetizing field on the heat capacity of a fenomagnet is discussed. 
Mean field calculations of the contributions of demagnetization eruergies to the heat capacity of 
a uniaxial ferromagnet are presenled and illustrared by applidon to heavy rare earth metals. 

In the renormalization group theory of magnetic systems with dipolar interactions the 
contribution to the free energy of the system f” the demagnetization effects can be 
neglected by considering a needle-shaped sample having only one magnetic domain and 
uniform bulk magnetization (Aharony and Bruce 1974). If an external magnetic field is 
present it has to be parallel to the long axis of the sample. However, for samples of other 
shapes the free energy and hence the heat capacity will have a contribution from the energies 
associated with demagnetization effects. Knowledge of the magnitude of such a correction 
term is particularly important close to Tc because of the possible effect of this correction 
on the critical behaviour of the heat capacity. 

The heat capacity of a ferromagnetic sample in an extemal magnetic field depends 
on its shape (Levy and Landau 1968). This shape dependence of the heat capacity is 
caused by the shape-dependent demagnetizing field. Griffiths (1969) argued that the heat 
capacity of a ferromagnetic sample in an external magnetic field has a singularity (a non- 
analytical behaviour, not a discontinuity) at a temperature close to and below T, where the 
spontaneous magnetization of the sample equals the extemal magnetic field divided by the 
demagnetization factor. 

In this letter we report calculations of the demagnetization free energy and the 
demagnetization heat capacity for an uniaxial ferromagnet in a zero or vanishingly small 
external magnetic field in the mean field approximation. These calculations were motivated 
by our investigation of the critical heat capacity of Gd near its Curie point (Bednan 1992, 
Bednarz et a/ 1992). Therefore our results will be illustrated primarily by using the example 
of Gd for a typical sample geometry used in our experimental studies. 

The magnetic energy, Fdom, in the low temperature regime, for a ferromagnetic plate 
magnetized along the normal was calculated by Kittel(l949) for stripe domains with narrow 
walls, in a thick slab (figure 1) 
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- Figure 1. Model for calculation of Ihe magnetic field energy of 
x wplanar svlp domains of altemafe sign. 

where V is the slab volume, Ms is the spontaneous magnetization, a, is the domain width, 
L, is the slab thickness and C I  is a numerical factor equal approximateiy to 0.85 in this 
case and around 0.5 in some other cases (Barker and Gehring 1983). 

It is possible to devise a domain arrangement for the rectangular slab from figure 1 
which will have no demagnetizing field (Kittel 1949, Vonsovskii 1974). The magnetic 
flux circuit is completed within the crystal by means of the domains of closure and no 
magnetic ‘poles’ are formed on the crystal surface. The magnetic energy associated with 
the demagnetization field is zero, but the anisotropy energy is not zero. 

In a uniaxial crystal the magnetization within the domains of closure is oriented in a 
direction of hard magnetization; this involves the anisotropy energy Wttel 1949, Vonsovskii 
1974) 

Fanis = Va, K i / 2 L ,  
i 

where V is the sample volume, K i  are the anisohapy constants, a, is the domain width 
and L, is the sample thickness. The ratio of the energy of a domain structure with domains 
of closure to the energy of a slab-like structure is determined primarily by the ratio of 
the sum of the anisotropy constants to the square of the spontaneous magnetization, M:. 
If the ratio 4 z ( C  K i ) / f i o M :  << 1 where po is the permeability of free space, then the 
flux closure configuration gives the lower energy but with the increasing value of the ratio 
the domains of closure will gradually open. The uniaxial ferromagnets usually possess a 
slab-like domain structure (Kittel 1949, Kooy and Enz 1960). 

In order to estimate the total energy associated with the domain structure one also has 
to estimate the domain wall contribution to that energy. Usually, the walls are described by 
rotation of the magnetization vector, M, at constant magnitude. M ,  within the wall. This 
magnetization profile is known as a rotational solution (Kittel 1949, Bulaevskii and Ginzburg 
1964). However, another possible wall structure (linear solution) is given by a vaxying 
magnitude of M with the magnetization direction always either parallel or antiparallel to 
the easy axis of the magnetization (Bulaevskii and Ginzburg 1964. Bar’yakhtar and Klepikov 
1972, Lawrie and Lowe 1980, Wintemitz et a1 1988). The latter magnetization profile is 
expected to occur near T, (Bulaevskii and Ginzburg 1964, Lawrie and Lowe 1980). 

Bulaevskii and Ginzburg (1964) analysed a single wall structure near Tc using a 
mean field approximation to the free energy expansion in powers of magnetization under 
the assumption that the domain width is much larger than the wall thickness. They 
showed that close to Tc the linear solution for the magnetization profile was given by 
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& ( x )  = Ms tanh(x/A) where x is the distance perpendicular to the wall and A is a measure 
of the wall thickness and is of the order of the correlation length 6. 

The solution of Bulaevskii and Ginzburg (1964) for one domain wall can be used to 
estimate the domain wall energy of N walls close to Tc in the mean field approximation 
provided the walls do not interact (a, >> 6). The free energy of the domain walls of 
the slab-like stmcture (figure I )  can be obtained by integrating the free energy functional 
derived from the exchange Hamiltonian of the LGW form 

where c and U are constants defined later, u(z) is the spin density with dimensions of 
I/(volume)’/2 and the integration is over the sample volume (Wegner 1976, Wintemitz e t  
a1 1988). The zeroth-order term, JL(O), of a series expansion of the exchange energy, 
J L ( k ) ,  in powers of wavenumber k is related to the mean field critical temperature, Tc0 by 
kBT,o = $ ( g f - l ) 2 J ( J + l ) J ~ ( 0 ) .  where J isthe total angularmomentum quantum number 
and gr is the Land6 factor (Stanley 1971, Coqblin 1977). 

The spin density can be related to the magnetization density by 

M(Z)Q:IZ/YPB (4) 

where P B  is the Bohr magneton, y = g J ( g 3  - I )  and 520 = V m i / N ~ ,  where V,,I is the 
molar volume and N A  is Avogadro’s number. The total free energy of a single wall, Fmt, is 

where the new symbols are defined as follows: K = t-’ = f;’(-r)” = KO(-t)” where U is 
the correlation length critical exponent equal to 1 in the mean field theory, and c = a/.,” 
(a is a dimensionless constant), and U‘ = U Q O / ( Y P B ) ~ .  The constant r is defined as 

5 = ~JL(~)/[(YPB)*/%]. (6) 

Taking the domain wall to lie in the y-z plane and the origin of the coordinate system in 
the centre of the wall, the Bulaevskii and Ginzburg (1964) solution M&) = Ms tanh(x/A) 
minimizes the functional given by ( 5 )  with A = (2a)’/*$ under the constraint that 
M: = [I/(~U’)](K~/K~). This condition implies uniform magnetization in the bulk of 
the domain far from the wall. 

For one wall, Fro[ can be expressed as a sum of several terms resulting from the integral 
given by (3, 

(7) 

where V I  is the volume of the domain including one wall, the first term on the right hand 
side is the homogeneous background magnetization energy and F,h contains the quadratic 
and quartic contributions to the free energy from the non-uniform magnetization. The 
various integrals can be evaluated under the approximation a, >> c (integration limits can 
be extended to fca where tanh(x) + &I). The inhomogeneous contribution to the free 
energy from N = LJaW independent walls, Fm,, is given by N times F u :  

FWII (2&/3)VrM; /cK& (8) 

Fiat = - i r ( K 2 / K i ) M : V i  -4- F u  
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where V is the sample volume. The total free energy associated with the demagnetization 
effects is obtained by adding to Fwa1l either the magnetic energy of the N volume domains 
or the anisotropy energy of the N domains of closure, depending on the domain structure, 
i.e. on the ratio 4nKz(T)/p+M: close to T,. The total free energy associated with the 
demagnetization effects, Fkm. for the slab-like domain structure is obtained by combining 
(1) and (8): 

Fdcm = V M : ~ & r / ( 3 t ~ ~ a , )  + Cia,/L,] .  (9) 

Fdm is a minimum with respect to the domain width, a,, when 

where the reduced temperature dependence of a, is written explicitly and is given by the 
exponent v/2.  The minimized demagnetization free energy (in SI units) is then given by 

The reduced temperature dependence of the minimized demagnetization energy, Fdnn, is 
determined by the exponent $I = 28 + v/2. There is agreement between the exponents 
obtained here for the reduced temperature dependence of the domain width and for the 
demagnetization free energy with the mean field limit of the corresponding exponents 
derived by Stauffer (1972) who analysed a scaling form of the free energy of the domain 
wall. Stauffer obtained, for the domain width, the exponent u(l - q)/2,  which becomes 
vf2 putting q = 0 as the mean field result; the calculated exponent for the free energy also 
reduces to the mean field exponent obtained here for 7 = 0. The contribution from the 
demagnetization energy to the total sample heat capacity can be estimated by 

= -T ( a2F&,,,/aTZ) Y (-l/Tc)&$I($I - l)(-t)’V-Z. (12) 

The above results will now be used to estimate the contribution from the demagnetization 
processes to the critical heat capacity of Gd The various parameters required will be taken 
directly from numerical fits to experimental data. 

N 223 
x 104 A m-‘, where NGd is the number of Gd atoms per m3. The temperature dependence 
of the spontaneous magnetization is given for small t by the power law M&) = Mso(-t)p 
where 8 = 0.39 for Gd (Aliev et a1 1988). The anisotropy constants KZ and Kq were 
measured by Graham (1963) as a function of temperature. The anisotropy constant Kz 
reaches a maximum at around 285 K (Kz N 2x  le J m-3) and decreases to zero at around 
350 K. In the region of the Curie temperature, K2 N 1.5 x 104 J mm3. “he anisotropy 
constants K4 and K6 vanish above approximately 240 K (Graham 1963, Rhyne 1972). 
Close to Tc, @(T) is much less than K&’) and the domain suucture is approximated by 
that in figure 1. 

One also obtains I Y_ 12 x loz for Gd, takhg Tc z 300 K and estimating &(O) using 
the relation given in (3)  with Tco N 1.5 T, to incorporate approximately the suppression of 
the Curie temperature by flucuations (Fisher 1967, Stanley 1971). 

For Gd the saturation magnetization at T = 0 K is M a  = g , p B N G P [ J ( J +  



Letter to the Editor L243 

The coefficient a was obtained using the data of Mackintosh and Moller (1972) for the 
exchange energy function J&) for Gd as a function of the reduced wave vector k/km 
in the c-axis direction: 

where the coefficient m N -12 meV can be estimated from a fit to the data in figure 5.8 of 
Mackintosh and Moller (1972). Taking k& N 2n/c where c N 5.8 ,&and with KO = ti’ E 
0.5 A-’ for an estimate of the inverse of the correlation length at T = 0 K, one obtains a E 

0.59. 
At this point a number of important estimates can be made. One of them concerns 

the range of the validity of the model. It was assumed in the above calculations that 
a, >> h Y $. This is an important assumption because the sum of free energies of N 
non-interacting walls can give a reasonable approximation to the actual free energy of the 
domain walls only if the separation between the walls is sufficiently large. Otherwise, by not 
taking into account the interactions between the walls, the model developed here does not 
correctly address the entropy of the whole system. From (10). a, N 6.7 x 104(-t)0.3s A for 
L, N 0.22 mm (this is the thickness of one of Gd samples investigated in our experimental 
study, Bednan 1992) and for U = 0.7 (Guillou and Zinn-Justin 1985). The domain width is 
of the order of the correlation length (6.7 x l ~ y - t ) ~ . ”  N 2(-t)-0.7) when t Y 5 x 
so the model breaks down at T 2: Tc- 0.015 K. 

J mol-’ putting for V the molar 
volume of Gd. From (12), at the reduced temperature t = -5 x (Tc - T Y 0.015 K), 
the demagnetization contribution to the heat capacity is around -1.4 J mol-’ K-’ which 
is approximately 2% of the total heat capacity. The demagnetization contribution becomes 
negligibly small funher away from Tc (it is around 0.3% at t = -5 x T N T,-O.15 K). 

The magnetic structure of the rare earth metals terbium (Tb) and dysprosium (Dy) in 
their ferromagnetic state is more complex than that of Gd. However an estimate of the 
magnitude of the demagnetizing contribution to the heat capacity of Tb and Dy near their 
Curie points can be obtained under the simplifying assumption of strip domain structure. For 
this purpose, we used the data of Mackintosh and Meller (1972) on their exchange function 
J L ( ~ )  for Tb and Dy in order to estimate the coefficient a in (11) and also literature data 
on the heat capacity for these metals (Jayasuriya et a1 1984, 1985). The sample geometry 
and dimensions were taken to be the same as those for Gd. 

The relative demagnetization contribution to the heat capacity of Tb is practically the 
same as that for Gd, i.e. about 2.7% at t = -5 x and 0.4% at t = -5 x loM4. This 
contribution is larger for Dy: about 8% at t = -5 x IOv5 and 1.3% at t = -5 x It 
should be emphasized that these estimates for Tb and Dy are intended only to indicate the 
magnitude of the contributions. 

The above results suggest that the contribution from demagnetization effects to the heat 
capacity of Gd, Tb and Dy are negligible over most of the temperature range which is 
typically experimentally accessed even by a high resolution heat capacity measurement for 
high quality samples. The analysis also indicates that for (-t) c lo4 this contribution 
may need to be taken into account as one of the factors determining the shape of the heat 
capacity curve very close to T,. 

We emphasize that the primary objective of this work has been to give a reasonable 
estimate of the magnitude of the demagnetization heat capacity contribution to the total 
heat capacity over a range of reduced temperature below T,. The modelgresented here is 

From (I l ) ,  the free energy is: Fhm N 
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not intended to give a complete description of the temperature dependence of the domain 
width, and hence the demagnetization free energy, in the immediate proximity of Tc. The 
self-consistent range of validity of this model requires (T - Tc)/Tc c -5 x in the 
case of Gd, for example. At smaller values of Irl, the walls can no longer be considered 
independent. It has been suggested that a periodic magnetization profile replaces the linear 
domain structure (Garel and Doniach 1982, Barker and Gehring 1983). The period of the 
profile is finite at Tc. 

In conclusion, the results presented in this letter show that demagnetization processes in 
thin plates of uniaxial ferromagnets may have a sizable effect on the heat capacity data in 
the critical region and should then be taken into account in the data analysis. The reduced 
temperature range where the demagnetization effects may become important in an analysis 
of the critical behaviour of the heat capacity will depend on the ferromagnet studied and 
on the sample geometry. 

This work was supported by the Natural Sciences and Engineering Reseach Council of 
Canada and the Killam Trust at Dalhousie University. 

References 

Aharony A and Bruce A D 1974 Phys. Rev, B 10 2973 
Aliev K K, Kamilov I K and Omarov A M 1988 Sov. Phys,-JETP 61 2262 
Barker W A and Gehring G A 1983 J.  Phys. C: Solid Slate Phys. 16 6415 
Bar'yakhtar V G and Klepikov V F 1972 Sov. PhysisolldSrore 14 1267 
Bednan G 1992 PhD Thesir Dalhousie University. Halifax 
Bednan G. Geldart D J W and While M A 1992 Phys. Rev. B submitfed 
Bulaevskii L N and Cinzburg V L 1964 Sov. Phys.-JETP 18 530 
Cqblin B 1917 The Elecrronic Srrucrure of Rare Earth Merals and Alloys: rhe Magneric Heavy Rare Earths (New 

Fisher M E 1967 Rep. frog, Phys. 30 615 
Garel T and Doniach S 1982 Phys, Rev. B 25 325 
Graham C D Jr 1963 J .  Appl. Phys. 34 1341 
Gritiiths R B 1969 Phys. Rev. 188 942 
Guillou J C and Zinn.Justin I 1985 J .  Physique Lnr. 46 L137 
Jayasuriya K D, Campbell S J and Stewart A M 1984 J.  Phys. F: Mer. Phys. I4 1725 - 1985 Phys. RN. B 31 6032 
Kinel C 1949 Rev. Mod. Phys. 21 541 
Kwy C and Enz U 1960 Philips Res. Rep. 15 7 
Lawrie I D and Lowe M I 1980 J .  Phys. A: Mark Gen. 14 981 
Levy P M and Landau D P 1968 J .  AppL Phys. 39 1128 
Mackintosh A R and M0ller H B 1972 Magnetic Properties of Rare Earth Metals ed R I Ellion (New York: 

Rhyne J J 1972 Magneric Properties ofRare Earth Merals ed R J EUioff (New York Plenum) I) 129 

York Academic) 

Plenum) p 187 

Sfanley H E 1971 Introducrion ro Phose Transitions and Cririml PhenomeM (Oxford: Clarendon) 
SIauffer D 1972 AIP CO@ Proc. 10 827 
Vonsovskii S V 1974 Magnetism vol 2 (New YoW Wiley) 
Wegner F J 1976 Phuse Tranririonr and Ciirical PhenomeM vol 6. ed C Domb and M S Green (New York: 

Winlemitz P. Grundland A M and Tuszy6ski J A 1988 J .  Phys. C: Solid Stoic Phys, 21 4931 
Academic) p 7 


